

Representation of Digitized Documents Using Document Specific
Alphabets and Fonts
Stefan Pletschacher; Chemnitz University of Technology, Institute for Print and Media Technology; Chemnitz, Germany

Abstract
Today’s digitization efforts lead to huge collections of

scanned documents. However, the means for automatic
preparation and further processing especially of ancient
documents are still limited. In this paper, progress and
implementation details of a framework for handling machine
printed documents without traditional OCR-methods are shown.
The approach is based on deriving any information needed for
encoding directly from the original itself. This is achieved by
extracting document specific alphabets and corresponding fonts. In
particular, it is reported on how preprocessing, text segmentation,
alphabet extraction, font generation, document encoding, as well
as the repository work and interact. Moreover, the creation of
ground truth data for evaluation and possible application
scenarios for the system are shown.

Introduction
Encoding is an essential task for efficient storage and

processing of digitized documents. This is especially true for
originals containing predominantly textual contents. Usually the
transition from bulky and not directly accessible bitmap images to
encoded text is accomplished by means of automatic methods like
OCR (Optical Character Recognition) or, in the worst case,
through manual transcription. However, there are many scenarios
where either of the before mentioned approaches are not
appropriate. Huge collections of historical documents, for instance,
can neither be dealt with manually nor converted by OCR due to
special scripts and unknown type faces. Hence, it is desirable to
have alternative means for automated processing of such
documents without any restrictions on the contained alphabets,
scripts or fonts. Moreover, for many academic disciplines, like
arts, it is important to have access not only to contained text of
source documents, but also to its original appearance. This
includes the reproduction of original fonts and special symbols,
but also broken characters or mistakes in writing.

In the following, an alternative approach and a purpose-built
system for handling digitized machine printed documents which
are not suitable for current OCR-methods are presented. In
particular, it is shown how documents of that kind may be
individually encoded and subsequently processed alike
conventional text. Furthermore, a way for preserving the original
appearance by generating document specific fonts is elaborated.
Progress and first implementation details of the prototype system
proposed in [1] are shown.

Background and Related Work
Up to now, there are mainly two ways of handling digitized

documents. The straightforward and inexpensive manner is storing
and outputting digital facsimiles in form of bitmap images without

any analysis or preparation of contents. Unfortunately, the
involved formats are very unhandy and offer only few possibilities
for further processing. The more sophisticated way requires first of
all recognition of contained text by means of OCR. Drawback of
this procedure is, however, that for a broad spectrum of documents
such methods are not applicable as outlined before.

To overcome these limitations, a new approach without true
recognition is needed. The main idea at this point is not to rely on
any prior knowledge or predefined alphabets for encoding but to
extract all necessary information directly from the present
document itself. For putting this into practice, a document specific
alphabet has to be extracted from the original. This is achieved by
clustering all occurrences of characters into classes and then
representing each class by just one prototype [2]. Once this
document specific alphabet has been determined, the original may
be encoded by replacing all individual characters with a reference
to their particular prototype. This follows the basic idea of
symbolic compression [3].

Only a few systems are pursuing this general approach (e.g.
[4]). However, the presented work goes one step further by
generating a corresponding vector font along with the document
specific alphabet. To obtain such a generic font, each prototype
has to be transformed into a path description using a customized
vectorization method that preserves important glyph details [5].
Result is a SVG-font (Scalable Vector Graphics) which can be
directly integrated in XML-based (eXtensible Markup Language)
descriptions of encoded documents [6, 7]. This representation,
based on a document specific alphabet and font, may be easily
processed, transformed and output on various platforms using
standard XML-technologies.

System and Implemented Methods
According to the necessary processing steps for converting

scanned documents into encoded representations the system is
organized into distinct modules. Namely, these modules include
preprocessing, text segmentation, alphabet extraction, font
generation, document encoding, and a repository which also
comprises means for transforming encoded documents into several
output formats.

Each of them is working self-contained and provides all
essential functionalities for the particular task. The modules are
coupled via the repository to exchange data and results. This is
transparent to the user since all components are integrated into a
common user interface. The coupling makes it easy to substitute
single system parts for testing of new implementations or if more
specialized and better performing tools become available in the
future.

Figure 1. Modules of the implemented framework

The information flow within the framework can be described
as follows: Scanned documents which constitute the original work
are fed into the repository and first registered. Afterwards, the
single preparation tasks can be automatically triggered as a
workflow or be manually performed. Since a main goal of the
system is a high degree of automation each workflow step can be
carried out using automatic estimation of appropriate parameters
for the actual method. Nonetheless, it is possible for the operator
to monitor each process step and if necessary go back and adjust
used parameters.

Once all document pages are registered the preprocessing can
be executed to obtain all relevant text blocks for further
preparation. Other document parts like photographs or drawings
are dealt with separately. Text segmentation detects the logical
structure of lines, words, and characters and delivers the particular
glyph images. These are to be further analyzed for ascertaining
distinct classes and to create one prototype for each class.
Subsequently a vector font is created for this document specific
alphabet. Finally, the original document is encoded using this
alphabet and font and stored in the repository for later use.

Preprocessing
The term preprocessing usually refers to more or less

sophisticated image optimization methods. At this point, however,
it stands for all preparation steps which are necessary to obtain
image parts representing textual content.

First of all, common image enhancement procedures like
deskewing and denoising are carried out. Next, each page is
segmented into coherent regions. This is achieved using a modified
run-length-smearing algorithm. Once separate regions were found,
their type has to be determined in order to decide on how to treat
them further. This means distinguishing between text parts and
other elements like figures. The discrimination is handled by a
specifically trained fuzzy-classifier which operates on features

extracted from the single image parts. Important features are
among others color gamut respectively grey level range
(depending on the input format) and occurrence frequencies of
specific textures. Eventually, the classifier delivers a confidence
value whether the element in question represents textual content.
In workflow mode, if a certain confidence threshold is not met this
particular image part is treated as a non-text object and will not be
further processed.

Recognized text objects are then binarized and routed to the
text segmentation module. Up to now, the text analysis methods
operate only on black and white images. Though, the system is
currently extended to support grey level images as well.

Text Segmentation
Text segmentation is potentially a very complicated task,

especially for scripts with touching characters. However, the
presented system is mainly intended for processing machine
printed documents containing ancient or newer European type
faces from which characters and words can be extracted without
extensive character recognition. Nevertheless, it is planned to
integrate a feedback between prototype extraction and text
segmentation to achieve more accurate results within a second
segmentation pass. Due to the modular system design it is also
possible to use specialized external tools, though the integrated
methods perform quite well on a broad spectrum of type faces.
Besides, it is always possible to correct a text segmentation result
manually or to do it completely by hand (Figure 2.), which might
be only an option for small documents and not for large
collections.

Figure 2. Text segmentation module

The first step is to ascertain so called fragments by means of a
region growing algorithm. Fragments can be whole glyphs for
single characters, glyph parts (e.g. diacritical marks) but also
multiple touching characters or ligatures. Following, the mapping
of fragments into glyphs, glyphs into words and words into lines
needs to be determined. This is done by a rule based method
evaluating geometric properties and relative positions to decide
whether elements have to be merged or split.

Text segmentation also serves as a basic structure and layout
analysis. Positions and sizes of elements are stored for later
document encoding

It is worthy of mention that the over-all system is quite robust
to segmentation errors. This is due to the fact that an inadequately
segmented glyph would rather result in a new prototype during
alphabet extraction than being wrongly assigned.

Alphabet Extraction
Segmented glyph images constitute the input for the alphabet

extraction module which is the crucial component of the document
analysis framework. Its task is to cluster all elements into
distinguishable classes of similar glyphs. There are especially two
characteristics which demand a particular kind of clustering
algorithm. The first is the potentially high amount of glyph
instances. Millions of glyphs may arise when whole books are
analyzed. Therefore, an iterative processing is required. The
second is the number of true classes being unknown at first.
Hence, methods which need an estimate of the cluster count in
advance can be ruled out. These restrictions led to the
implementation of a customized clustering algorithm based on
vector quantization.

The algorithm is running over all glyphs and creates a new
cluster each time the maximum similarity of the current glyph
compared to all existing clusters drops below a certain threshold.
Otherwise, the present glyph is merged into the cluster with the
highest similarity value. The similarity is calculated by means of
pattern matching. To consider not only the total amount of
differing pixels but also details of the glyph’s shapes a special
weighted method has been implemented.

Figure 3. Alphabet extraction module: Left – incoming glyphs, middle –
extracted prototype alphabet, right – glyphs represented by the selected
prototype

Every time a new glyph is merged into an existing cluster the
particular prototype as representative for this class needs to be
updated. This causes prototypes to slightly change with a growing
number of represented glyphs. The actual prototype bitmap is
determined based on the density of each pixel contributed by all

represented glyphs. Hence, distortions and noise occurring only in
few glyphs will be effectively suppressed.

In order to enable automated workflows, the clustering was
extended towards an adaptive method which is capable of
calculating the appropriate threshold depending on the given input
documents. The key to this functionality lies in observing the
growth of the maximum cluster distances. This will be elaborated
in further publications.

Font Generation
Encoding and reproduction of originals is already possible

using the created alphabet together with the particular prototype
bitmaps. However, such a bitmap font would limit further use
scenarios like reformatting and repurposing of contents. Therefore,
the framework includes a component for glyph vectorization and
thus generation of a corresponding vector font.

Figure 4. Rendered font for a document specific alphabet

Core of the font generation module is a polygonal
approximation method to achieve the raster to vector conversation.
The algorithm searches for the simplest path description which still
matches the glyph contour within a given maximum deviation.

The algorithm has been extended for automatically estimating
the fitting deviation parameter depending on the complexity of the
current glyph. This is done by an integrated quality assessment of
vectorization results based on a ground truth comparison. As
quality measure serves an error value determined by a weighted
pattern matching which pays special attention to glyph details.

Encoding
Having the document specific alphabet and font available, the

last preparation step is the creation of encoded facsimiles of the
originals. Central format for this task is XML. The system uses a
customized XML-Schema which is based on existing formats and
defines all elements together with their structure.

Prerequisite is an individual code point being assigned to each
prototype. For compatibility with standardized XML processing
tools, Unicode [8] is used for this purpose. However, since this
system does not conduct real character recognition, these code
points have to be chosen in a manner that no predefined characters
are overwritten. This is achieved by taking code points from the
private use areas of the Unicode standard. References to the
document specific alphabet can therefore coexist with any other
Unicode text and be uniformly processed. The encoded document
is assembled by putting the corresponding code point for each
glyph into the structure obtained during text segmentation.

For later output the generated font needs to be preserved and
is hence stored together with the encoded document. The best way
for direct integration of font descriptions into XML-instances is
SVG as a standardized syntax for vector graphics. The font
generation module did already deliver the necessary path
descriptions of all prototypes which are now used to set up the
SVG-font within the definition part of the final XML-document.

Repository and Output System
The repository module serves as the central turntable for

incoming documents, any kind of process data and intermediate
results as well as for delivering prepared documents. It comprises
the workflow engine which keeps track of jobs and triggers the
single processes. The other components are coupled to the
repository in order to receive their input data and to return results
back to the system. As all interim results are stored along with
originals and final documents it is easily feasible to make use of
external tools for any of the delineated processing steps. The only
requirement is that the program in question can be controlled by
the workflow engine (e.g. by command line).

For utilizing prepared documents there are some output
functionalities which are currently under development and will be
prospectively moved to a separate module. Output transformations
are performed using XSL (eXtensible Stylesheet Language) style
sheets containing specific rules for different output channels like
WWW, print and mobile devices. The benefits of encoded
document representations are now becoming clearly evident as it is
easily possible to use the content in various ways. New layouts
with different text flows can be achieved using common XSL-
transformations.

Discussion
The evaluation of the over-all system is in the early stage as

parts of the framework are still under development and further
optimized. Moreover, the production of ground truth data to
measure performance values and characteristics of the
implemented methods is a costly task. For significant tests huge
amounts of samples are necessary. This concerns especially the
alphabet extraction for which correctly segmented glyph images
with known class membership are needed.

To overcome this issue two approaches for creating test
samples have been put into practice. The first is manual utilization
of real document images, though, aided by the system. Classes are
suggested by the alphabet extraction module and afterwards the
operator has to go through all glyphs and check for correct
affiliations. The advantage of this procedure is the output in form
of real-world examples. Yet, the manual verification is a time
consuming task. The second approach is capable of producing

large amounts of test samples instantly. However, this is achieved
by generating them synthetically. For this purpose existing texts or
arbitrary character sequences with known codes are fed to a raster
image processor which creates the actual glyph images. Noise and
distortions can be added to simulate fluctuations of print processes,
paper defects or scanner artifacts.

A comprehensive test set with ground truth data is currently
under construction and used for an extensive evaluation of the
system. This material can later be used for comparison with
traditional OCR-methods as well.

Figure 5. Original bitmap (top) and produced output of the encoded
document (below)

First results have already shown that the framework is well
capable of handling digitized documents with complex scripts and
ancient fonts. Figure 5. shows the reproduction of a text block out
of a book from the 18th century using the document specific
alphabet and font. It appears that similar glyphs from the original
have been replaced by just one prototype. However, since the
system has a bias towards accuracy rather than compression, it is
also possible that several prototypes occur for semantically equal
glyphs if they show a different style. This effect can be observed

comparing the black letter “a” and the roman-face “a”. In the
document specific alphabet they form distinct characters. This
makes sense as the different layout was used to express a special
meaning, in the present case to distinguish between ordinary text
and specialist terms.

When evaluating the results of the alphabet extraction, there

are two different types of possible misclassifications which need to
be considered. The first type arises when a glyph is merged into a
wrong cluster. This is a fatal error and would cause falsification of
the content. The second is less severe and emerges when a glyph is
erroneously put into a new cluster instead of being merged into its
already existing true class. Whereas the first is to be avoided by all
means, the second causes only redundancy and can be tolerated up
to a certain degree. Regardless, this would prevent the ideal
compression of the encoded document. Ideal compression can only
be reached if each true class of the original is represented by
exactly one class in the extracted alphabet. Thus, there is a
trade-off between the demanded accuracy and the achievable
compression rate. Task of the adaptive clustering method is
therefore to find the optimum working point which favors
accuracy and still obtains a good compression.

The described framework can be employed in numerous use

scenarios. It facilitates the implementation of infrastructures for
efficiently storing and providing digitized documents as true to the
original as possible. In this way, printed material of archives and
libraries can be inexpensively integrated into recent information
systems and used via internet. Furthermore, new output channels
like mobile devices are becoming available as contents can be
reformatted and presented in new ways.

Existing OCR-based systems could be extended to support the
encoding of documents with unknown type faces. As a matter of
fact, the delineated system can also be used for semi-automatic
character recognition. The effort for transcribing texts is
dramatically reduced as the alphabet extraction module delivers a
condensed set of prototypes. Such a tool is already in use for the
generation of test samples as described above.

Conclusion and Future Work
Today, a lot of effort is spent on digitizing huge archives and

collections of printed originals. However, the means for further
utilization of scanned documents are still limited while repositories
are growing rapidly. This is especially true for the preparation of
historical documents or originals with complex scripts and type
faces which can not be processed using traditional OCR-methods.

The presented system makes a contribution to solve this
problem by implementing a pragmatic approach. If the content of
document images can not be automatically recognized, it can at
least be encoded and treated alike text. This enables further

application and reuse of digitized documents even if the true
meaning is still unknown. Furthermore, documents can be stored
in a compressed form, preserving the appearance as true to the
original as possible.

The used approach is very robust and not prone to severe
classification errors like substitutes in OCR-systems. This is
achieved at the cost of a certain redundancy in the resulting
document encoding. Still, the system tries to find the best valid
solution by means of an adaptive alphabet extraction method. The
over-all workflow can be automated as appropriate parameters for
the particular algorithms are estimated by the system.

Aim of this paper was to give an overview of a concrete
implementation serving the outlined purpose. The system structure
and employed methods have been discussed briefly. More
elaborate reports on particular algorithms and their performance
will be subject of future publications. Planned features to be
implemented and tested in coming versions of the system are
feedback from alphabet extraction to text segmentation, means for
editing and repurposing as well as search functions for document
specific encoded documents.

References
[1] S. Pletschacher, OCR Alternatives for Electronic Publishing of

Digitised Documents, Proc. International Conference on Electronic
Publishing, Leuven, Belgium, 2005

[2] G. Kopec, M. Lomelin, Document-Specific Character Template
Estimation, Proc. SPIE Vol. 2660, Document Recognition III, 1996

[3] R. N. Ascher, G. Nagy, A Means for Achieving a High Degree of
Compaction on Scan-Digitized Printed Text, IEEE Transactions on
Computers, Volume C-23, Issue 11, 1974

[4] T. M. Breuel, W. Janssen, K. Popat and H. Baird, Paper to PDA, Proc.
International Conference on Pattern Recognition, Quebec, Canada,
2002

[5] S. Pletschacher, M. Eckert, A. C. Huebler, Vectorization of Glyphs
and Their Representation in SVG for XML-Based Processing, Proc.
International Conference on Electronic Publishing, Bansko, Bulgaria,
2006

[6] SVG - Scalable Vector Graphics, W3C,
http://www.w3.org/Graphics/SVG/, last visited April 2008

[7] XML - Extensible Markup Language, W3C,
http://www.w3.org/XML/, last visited April 2008

[8] Unicode Inc., Unicode Standard,
http://www.unicode.org/standard/standard.html, last visited April 2008

Author Biography
Stefan Pletschacher studied Computer Science with special focus on

Artificial Intelligence at Chemnitz University of Technology (Germany). In
2003 he obtained his masters degree “Diplom-Informatiker” from there.
Since then he has been working as a research assistant at the Institute for
Print and Media Technology at Chemnitz University of Technology.
Currently he is pursuing his PhD in the field of Document Image Analysis.

